Analysis of One-Hop Packet Delay in MANETs over research 802.11 DCF

In mobile ad hoc networks (MANETs), the estimation of packet end-to-end delay depends on that of one-hop packet delay. In this paper, we conduct an analysis of the one-hop packet delay in MANETs, where the medium access control (MAC) layer uses the research 802.11 distributed coordination function (DCF) to share the medium. In the MANET, each node runs the research 802.11 DCF and a routing protocol. It is assumed that all nodes are one-hop neighbors, and that any pair of nodes can send data over the wireless channel with a fixed data rate. The light traffic condition is used, i.e., each node generates packets at the network layer according to a Poisson process. By modeling each wireless node as an M/M/1 queueing system, we derive the mean one-hop packet delay analytically under the light traffic condition. Simulation analysis is carried out to verify the derived results. Results show that the mean one-hop packet delay increases with either the network size or the packet generation rate in networks subject to the light traffic condition. The mean one-hop packet delay derived in this paper is analytical and exact for networks under the light traffic condition. Results that can be found in the literature are usually based on the heavy traffic condition, and they tend to overestimate by a large amount the mean one-hop delay for networks with light traffic